s32 wpPST[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
4, 4,-24,-30,-30, 8, 8, 8,
12, 8, 0,-10,-10, 0, 4, 6,
8, 14, 12, 20, 20, 8, 6, 4,
10, 16, 16, 30, 30, 12, 10, 8,
20, 40, 40, 60, 60, 40, 40, 20,
40, 60, 60, 80, 80, 60, 60, 40,
0, 0, 0, 0, 0, 0, 0, 0
};
s32 wnPST[64] = {
0,-10, 12, 12, 12, 12,-10, 0,
6, 12, 24, 30, 26, 24, 12, 6,
12, 24, 30, 36, 36, 38, 24, 12,
12, 24, 36, 40, 40, 36, 24, 12,
12, 24, 36, 42, 42, 36, 24, 12,
12, 24, 36, 40, 40, 36, 24, 12,
6, 12, 24, 36, 36, 24, 12, 6,
0, 6, 12, 12, 12, 12, 6, 0
};
s32 wbPST[64] = {
6, 0, 0, 0, 0, 0, 0, 6,
10, 30, 12, 12, 12, 12, 30, 10,
0, 20, 30, 12, 12, 30, 20, 0,
16, 12, 32, 32, 32, 32, 12, 16,
0, 30, 24, 32, 32, 24, 30, 0,
0, 12, 30, 24, 24, 30, 12, 0,
0, 18, 20, 20, 20, 20, 18, 0,
6, 0, 0, 0, 0, 0, 0, 6
};
s32 wrPST[64] = {
6, 10, 12, 14, 14, 12, 10, 6,
8, 10, 10, 16, 16, 10, 10, 8,
6, 8, 10, 12, 12, 10, 8, 6,
4, 6, 8, 10, 10, 8, 6, 4,
4, 6, 8, 10, 10, 8, 6, 4,
6, 8, 10, 12, 12, 10, 8, 6,
20, 20, 20, 20, 20, 20, 20, 20,
18, 18, 18, 18, 18, 18, 18, 18
};
s32 wqPST[64] = {
14, 14, 14, 14, 14, 14, 14, 14,
14, 16, 16, 16, 16, 16, 16, 14,
14, 16, 18, 18, 18, 18, 16, 14,
14, 16, 18, 18, 18, 18, 16, 14,
16, 18, 20, 20, 20, 20, 18, 16,
16, 18, 20, 20, 20, 20, 18, 16,
18, 20, 20, 20, 20, 20, 20, 18,
18, 18, 18, 18, 18, 18, 18, 18
};
s32 wkPST[64] = {
30, 60, 20,-40, 0, 20, 60, 30,
-30,-30,-30,-30,-30,-30,-30,-30,
-20,-20,-20,-20,-20,-20,-20,-20,
-10, 0, 20, 20, 20, 20, 0,-10,
-10, 0, 20, 40, 40, 20, 0,-10,
-10, 0, 20, 20, 20, 20, 0,-10,
-10, 0, 0, 0, 0, 0, 0,-10,
-10,-10,-10,-10,-10,-10,-10,-10
};
s32 bpPST[64] = {
0, 0, 0, 0, 0, 0, 0, 0,
40, 60, 60, 80, 80, 60, 60, 40,
20, 40, 40, 60, 60, 40, 40, 20,
10, 16, 12, 30, 30, 12, 8, 6,
8, 14, 16, 20, 20, 8, 6, 4,
12, 8, 0,-10,-10, 0, 4, 6,
4, 4,-24,-30,-30, 8, 8, 4,
0, 0, 0, 0, 0, 0, 0, 0
};
s32 bnPST[64] = {
0, 6, 12, 12, 12, 12, 6, 0,
6, 12, 24, 36, 36, 24, 12, 6,
12, 24, 36, 40, 40, 36, 24, 12,
12, 24, 36, 42, 42, 36, 24, 12,
12, 24, 36, 40, 40, 36, 24, 12,
12, 24, 30, 36, 36, 38, 24, 12,
6, 12, 24, 30, 26, 24, 12, 6,
0,-10, 12, 12, 12, 12,-10, 0
};
s32 bbPST[64] = {
6, 0, 0, 0, 0, 0, 0, 6,
0, 18, 20, 20, 20, 20, 18, 0,
0, 12, 30, 24, 24, 30, 12, 0,
0, 30, 24, 32, 32, 24, 30, 0,
16, 12, 32, 32, 32, 32, 12, 16,
0, 20, 30, 12, 12, 30, 20, 0,
10, 30, 12, 12, 12, 12, 30, 10,
6, 0, 0, 0, 0, 0, 0, 6
};
s32 brPST[64] = {
22, 22, 22, 22, 22, 22, 22, 22,
24, 24, 24, 24, 24, 24, 24, 24,
6, 8, 10, 12, 12, 10, 8, 6,
4, 6, 8, 10, 10, 8, 6, 4,
4, 6, 8, 10, 10, 8, 6, 4,
6, 8, 10, 12, 12, 10, 8, 6,
8, 10, 10, 22, 22, 10, 10, 8,
8, 10, 12, 20, 20, 12, 10, 8
};
s32 bqPST[64] = {
18, 18, 18, 18, 18, 18, 18, 18,
18, 20, 20, 20, 20, 20, 20, 18,
16, 18, 20, 20, 20, 20, 18, 16,
16, 18, 20, 20, 20, 20, 18, 16,
14, 16, 18, 18, 18, 18, 16, 14,
14, 16, 18, 18, 18, 18, 16, 14,
14, 16, 16, 16, 16, 16, 16, 14,
14, 14, 14, 14, 14, 14, 14, 14
};
s32 bkPST[64] = {
-10,-10,-10,-10,-10,-10,-10,-10,
-10, 0, 0, 0, 0, 0, 0,-10,
-10, 0, 20, 20, 20, 20, 0,-10,
-10, 0, 20, 40, 40, 20, 0,-10,
-10, 0, 20, 20, 20, 20, 0,-10,
-20,-20,-20,-20,-20,-20,-20,-20,
-30,-30,-30,-30,-30,-30,-30,-30,
20, 60, 20,-40, 0, 20, 60, 20
};
The first thing that I did was to do a 60 sec search of the original position. Using PESTO Bric finished 13 ply in 35 sec. Using CAR Bric finished ply 14 in 48 sec.
FEN: rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1
Bricabrac:
1 00:00 20 20 +0.50 d2d4
2 00:00 85 85 0.00 d2d4 d7d5
3 00:00 668 668 +0.48 d2d4 d7d5 g1f3
4 00:00 3,611 3,611 0.00 d2d4 d7d5 g1f3 g8f6
5 00:00 13,850 13,850 +0.40 d2d4 d7d5 g1f3 g8f6 b1c3
6 00:00 39,955 39,955 0.00 d2d4 d7d5 g1f3 g8f6 b1c3 b8c6
7 00:00 114,209 11,420,900 +0.36 d2d4 d7d5 g1f3 g8f6 b1d2 b8c6 c2c4
8 00:00 728,084 12,134,733 +0.08 e2e4 c7c5 d2d4 c5d4 g1f3 e7e5 f3e5 b8c6
9 00:00 1,916,945 11,276,147 +0.50 e2e4 e7e5 b1c3 g8f6 g1f3 b8c6 f1b5 c6d4 e1g1
10 00:01 5,160,109 10,530,834 +0.12 e2e4 c7c5 g1f3 b8c6 d2d4 c5d4 f3d4 c6d4 d1d4 g8f6
11 00:02 17,610,249 10,608,583 +0.26 e2e4 e7e5 g1f3 g8f6 b1c3 b8c6 f1b5 f8b4 b5c6 d7c6 e1g1
12 00:04 44,150,022 10,638,559 +0.10 e2e4 e7e5 g1f3 g8f6 b1c3 b8c6 f1b5 f8b4 e1g1 e8g8 a2a3 b4c3
13 00:16 166,338,838 10,628,679 +0.36 e2e4 e7e5 g1f3 g8f6 f3e5 f6e4 d2d3 e4f6 c2c4 d7d6 e5f3 c7c5 b1c3
14 00:48 508,450,134 10,663,803 +0.06 e2e4 e7e5 g1f3 g8f6 d2d4 f6e4 f3e5 d7d5 b1d2 b8d7 c2c4 d7e5 d4e5 c8f5
But how smart do the moves look? To answer that I had Bric play a one ply per move game against itself.
[pgn][Event "Computer chess game"]
[Site "MASTER"]
[Date "2021.03.10"]
[Round "?"]
[White "Bricabrac"]
[Black "Bricabrac"]
[Result "1/2-1/2"]
[BlackElo "2200"]
[ECO "D30"]
[Opening "QGD"]
[Time "07:51:26"]
[Variation "Stonewall Formation"]
[WhiteElo "2200"]
[Termination "normal"]
[PlyCount "75"]
[WhiteType "program"]
[BlackType "program"]
1. d4 {(d2d4) +0.50/1} d5 {(d7d5) 0.00/1} 2. Nf3 {(g1f3) +0.48/1} Nf6
{(g8f6) 0.00/1} 3. Nbd2 {(b1d2) +0.40/1} Nc6 {(b8c6) 0.00/1} 4. c4 {(c2c4)
+0.36/1} Bf5 {(c8f5) -0.08/1} 5. e3 {(e2e3) +0.24/1} e6 {(e7e6) -0.04/1} 6.
Be2 {(f1e2) +0.16/1} Bb4 {(f8b4) +0.14/1} 7. O-O {(e1g1) +0.52/1} O-O
{(e8g8) +0.12/1} 8. a3 {(a2a3) -0.04/1} Ba5 {(b4a5) -0.10/1} 9. b4 {(b2b4)
+0.20/1} Bb6 {(a5b6) -0.16/1} 10. Bb2 {(c1b2) +0.46/1} a6 {(a7a6) -0.38/1}
11. Rc1 {(a1c1) +0.44/1} Re8 {(f8e8) -0.36/1} 12. c5 {(c4c5) +0.40/1} Ba7
{(b6a7) -0.50/1} 13. Qb3 {(d1b3) +0.52/1} Rc8 {(a8c8) -0.48/1} 14. Rcd1
{(c1d1) +0.50/1} Ne4 {(f6e4) -0.48/1} 15. Ne5 {(f3e5) +0.50/1} Nxe5 {(c6e5)
-0.50/1} 16. Nxe4 {(d2e4) +0.50/1} c6 {(c7c6) -0.36/1} 17. dxe5 {(d4e5)
+0.36/1} Bxe4 {(f5e4) -0.36/1} 18. Bf3 {(e2f3) +0.48/1} Bxf3 {(e4f3)
-0.48/1} 19. gxf3 {(g2f3) +0.18/1} b5 {(b7b5) -0.08/1} 20. e4 {(e3e4)
+0.38/1} h6 {(h7h6) -0.36/1} 21. f4 {(f3f4) +0.44/1} Qh4 {(d8h4) -0.42/1}
22. Qe3 {(b3e3) +0.44/1} Rcd8 {(c8d8) -0.36/1} 23. Rd2 {(d1d2) +0.38/1}
Qg4+ {(h4g4) -0.36/1} 24. Kh1 {(g1h1) +0.06/1} Rd7 {(d8d7) -0.04/1} 25.
Rfd1 {(f1d1) +0.06/1} Ree7 {(e8e7) -0.04/1} 26. Bd4 {(b2d4) +0.06/1} dxe4
{(d5e4) -0.06/1} 27. Qxe4 {(e3e4) +0.06/1} Qh3 {(g4h3) -0.08/1} 28. Kg1
{(h1g1) +0.20/1} Qxa3 {(h3a3) -0.20/1} 29. Qxc6 {(e4c6) +0.20/1} Qxb4
{(a3b4) -0.20/1} 30. Qxa6 {(c6a6) +0.20/1} Qc4 {(b4c4) -0.18/1} 31. Qc6
{(a6c6) +0.22/1} b4 {(b5b4) -0.20/1} 32. h3 {(h2h3) +0.18/1} b3 {(b4b3)
+0.06/1} 33. h4 {(h3h4) -0.08/1} Qb4 {(c4b4) +0.06/1} 34. h5 {(h4h5)
-0.02/1} Qc4 {(b4c4) +0.04/1} 35. Qf3 {(c6f3) -0.06/1} Qb4 {(c4b4) +0.04/1}
36. Qc6 {(f3c6) -0.02/1} Qc4 {(b4c4) +0.04/1} 37. Qf3 {(c6f3) -0.06/1} Qb4
{(c4b4) +0.04/1} 38. Qc6 {(f3c6) -0.02/1 3-fold repetition} 1/2-1/2[/pgn]
Rather good looking if I had to say so myself. But, how would it do against another engine? Which engine? 'I know, I'll try SF13 NNUE!

[pgn][Event "Computer chess game"]
[Site "MASTER"]
[Date "2021.03.10"]
[Round "?"]
[White "Bricabrac"]
[Black "Stockfish_13_win_x64_avx2"]
[Result "1/2-1/2"]
[BlackElo "2000"]
[ECO "A51"]
[Opening "Budapest Defence"]
[Time "08:00:20"]
[Variation "Fajarowicz-Richter Gambit, 4.Nf3 Nc6 5.a3"]
[WhiteElo "2200"]
[Termination "normal"]
[PlyCount "83"]
[WhiteType "program"]
[BlackType "program"]
1. d4 {(d2d4) +0.48/1} d5 {(d7-d5) -0.34/1} 2. Nf3 {(g1f3) +0.46/1} Nf6
{(Ng8-f6) -0.19/1} 3. Nbd2 {(b1d2) +0.38/1} Bf5 {(Bc8-f5) +0.23/1} 4. c4
{(c2c4) +0.42/1} e6 {(e7-e6) -0.04/1} 5. e3 {(e2e3) +0.42/1} Bd6 {(Bf8-d6)
0.00/1} 6. Be2 {(f1e2) +0.42/1} Nc6 {(Nb8-c6) +0.09/1} 7. O-O {(e1g1)
+0.68/1} O-O {(O-O) -0.26/1} 8. a3 {(a2a3) +0.12/1} Ne4 {(Nf6-e4) -0.21/1}
9. b4 {(b2b4) +0.18/1} Nc3 {(Ne4-c3) -0.12/1} 10. Qe1 {(d1e1) +0.10/1} Qe7
{(Qd8-e7 c4xd5) +0.78/1} 11. Bb2 {(c1b2) +0.38/1} Nxe2+ {(Nc3xe2+ Qe1xe2)
+0.24/1} 12. Qxe2 {(e1e2) +0.38/1} Bg4 {(Bf5-g4) +0.16/1} 13. e4 {(e3e4)
+0.70/1} dxe4 {(d5xe4 Qe2xe4) -0.71/1} 14. Nxe4 {(d2e4) +0.80/1} Nxd4
{(Nc6xd4) +0.80/1} 15. Bxd4 {(b2d4) +2.82/1} Bxf3 {(Bg4xf3 g2xf3) -0.96/1}
16. Qxf3 {(e2f3) +3.16/1} Rfd8 {(Rf8-d8 Ne4xd6) -3.75/1} 17. Rad1 {(a1d1)
+3.16/1} b5 {(b7-b5) -4.39/1} 18. cxb5 {(c4b5) +4.24/1} f5 {(f7-f5)
-4.51/1} 19. Nxd6 {(e4d6) +4.22/1} cxd6 {(c7xd6) -4.21/1} 20. Rd2 {(d1d2)
+4.64/1} h6 {(h7-h6) -4.13/1} 21. Rfd1 {(f1d1) +4.64/1} Qd7 {(Qe7-d7)
-4.27/1} 22. Qc6 {(f3c6) +4.66/1} f4 {(f5-f4 Qc6xd7 Rd8xd7) -4.44/1} 23.
Re1 {(d1e1) +4.62/1} e5 {(e6-e5) -4.36/1} 24. Qxd7 {(c6d7) +5.46/1} Rxd7
{(Rd8xd7) -3.82/1} 25. Bxe5 {(d4e5) +5.46/1} Re8 {(Ra8-e8) -5.38/1} 26.
Ree2 {(e1e2) +5.36/1} f3 {(f4-f3) -4.67/1} 27. gxf3 {(g2f3) +6.00/1} Rde7
{(Rd7-e7) -5.91/1} 28. Rxd6 {(d2d6) +3.40/1} Rxe5 {(Re7xe5) -3.84/1} 29.
Rxe5 {(e2e5) +3.40/1} Rxe5 {(Re8xe5 Rd6-d8+ Kg8-h7) -7.04/1} 30. Rd8+
{(d6d8) +3.46/1} Kh7 {(Kg8-h7) -7.04/1} 31. Rb8 {(d8b8) +4.36/1} Kg6
{(Kh7-g6) -1.45/1} 32. f4 {(f3f4) +4.34/1} Re1+ {(Re5-e1+ Kg1-g2) -1.82/1}
33. Kg2 {(g1g2) +3.32/1} Rc1 {(Re1-c1) -2.06/1} 34. Kf3 {(g2f3) +3.42/1}
Rd1 {(Rc1-d1) -2.24/1} 35. Ke4 {(f3e4) +3.82/1} Rd7 {(Rd1-d7) -2.34/1} 36.
Ke5 {(e4e5) +4.02/1} Re7+ {(Rd7-e7+ Ke5-d5) -6.11/1} 37. Kd5 {(e5d5)
+4.02/1} Re1 {(Re7-e1) -2.37/1} 38. Rb7 {(b8b7) +4.04/1} Rd1+ {(Re1-d1+
Kd5-c4 Rd1-c1+ Kc4-d4) -4.78/1} 39. Ke5 {(d5e5) +4.04/1} Re1+ {(Rd1-e1+
Ke5-d6) -4.20/1} 40. Kd5 {(e5d5) +4.04/1} Rd1+ {(Re1-d1+ Kd5-c4) -4.78/1}
41. Ke5 {(d5e5) +4.04/1} Re1+ {(Rd1-e1+ Ke5-d6 Re1-d1+ Kd6-c5) -4.18/1} 42.
Kd5 {(e5d5) +4.04/1 3-fold repetition} 1/2-1/2[/pgn]