NebiuAlien and mini-Shogi (For Daniel)

Discussion of chess software programming and technical issues.

Moderators: hgm, Harvey Williamson, bob

Forum rules
This textbox is used to restore diagrams posted with the [d] tag before the upgrade.
User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Thu Aug 22, 2013 8:04 pm

Nebiyu Alien is quite strong at mini-Shogi, but it doesn't seem to be aware that in case of repetition white (sente) loses (unless it is perpetual check, in which case the checker loses). E.g.

Code: Select all

[Event "Computer Chess Game"]
[Site "MAKRO-PC"]
[Date "2013.08.22"]
[Round "6"]
[White "NebiyuAlien_1.43"]
[Black "Shokidoki Yokohama 2013"]
[Result "0-1"]
[TimeControl "40/60"]
[Variant "shogi"]
[FEN "rbsgk/4p/5/P4/KGSBR[-] w 0 1"]
[SetUp "1"]

{--------------
r b s g k
. . . . p
. . . . .
P . . . .
K G S B R
white to play
--------------}
1. Bc2 {+0.00/17} Bc4 {+0.12/18 4:49} 2. Sb2 {-0.12/18 7:48} Sd4
{+0.32/18 5:11} 3. a3 {-0.12/18 4:12} Rb5 {+0.32/18 3:32} 4. Rd1
{-0.76/17 10:42} Be2 {+0.20/17 6:09} 5. Rd2 {-0.16/17 3:37} Bc4
{+0.24/17 1:46} 6. Ba4 {-0.08/17 1:50} Rc5 {+0.04/17 2:01} 7. Gc2
{+0.00/16 4:46} e3 {-0.04/16 2:38} 8. Sc3 {+0.28/16 3:47} Sxc3
{+0.16/16 3:01} 9. Gxc3 {-0.16/16 7:18} S@d4 {+0.16/15 3:51} 10. Gc2
{-0.20/15 3:44} Ra5 11. S@b2 {-0.10/18 2.7} Rc5 {+0.76/12 1.6} 12. Rd1
{+0.00/17 1.9} Be2 {+0.24/13 1.5} 13. Rb1 {-0.10/19 4} Gc4 {+0.08/12 5} 14.
Rc1 {+0.00/18 1.8} Gb4 {+0.56/13 2.0} 15. Bb3 {-0.40/19 1.8} Ke4
{+0.52/12 3} 16. Ka2 {-0.30/19 4} Ke5 {+0.92/12 3} 17. Ka1 {+0.00/20 1.7}
Ke4 {+0.36/13 2.6} 18. Ka2 {+0.00/22 1.7} Ke5 {+1.28/13 6} 19. Ka1
{+0.00/20 1.7}
{Xboard adjudication: repetition} 0-1
If you can fix that, I think it would be amongst the strongest engines in the World. We definitely should try to get Takeshi Ito to run it in the 7th UEC Cup (November 24).

Daniel Shawul
Posts: 3746
Joined: Tue Mar 14, 2006 10:34 am
Location: Ethiopia
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by Daniel Shawul » Fri Aug 23, 2013 12:10 am

They forgot to add the rule to the wiki page http://en.wikipedia.org/wiki/Minishogi . It says since minishogi is a subset of shogi it inherits all the rules except what is explicitly mentioned there. In other website, it says sente (black) looses not white. Anyway I will figure that out and fix it before November 24th. I will try to contact Takeshi in the shogi forums after that.
Thanks!

User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Fri Aug 23, 2013 4:16 am

Indeed, the Wikipedia omits this. The rules according to which the UEC Cup is played, are published at:

http://minerva.cs.uec.ac.jp/~uec55shogi ... English%29

User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Fri Aug 23, 2013 5:48 am

It also does not know the rule about Pawn-drop mates. It is illegal to checkmate by a Pawn drop, both in regular and mini-Shogi. Easiest way to implement this is to not really consider it an illegal move, but as a move that ends the game with a loss. So in Shokidoki, whenever bestScore remains at -INF, and he is in check, I just test if the previous move is a Pawn drop, and if it is, correct the score to +INF (like in a Chess engine you would correct the score from -INF to 0 if you were not in check).

Code: Select all

[Event "Computer Chess Game"]
[Site "MAKRO-PC"]
[Date "2013.08.23"]
[Round "159"]
[White "Shokidoki Yokohama 2013"]
[Black "NebiyuAlien_1.43"]
[Result "1-0"]
[TimeControl "40/60"]
[Variant "shogi"]
[FEN "rbsgk/4p/5/P4/KGSBR[-] w 0 1"]
[SetUp "1"]

{--------------
r b s g k
. . . . p
. . . . .
P . . . .
K G S B R
white to play
--------------}
1. Gb2 Gd4 2. Bc2 {+0.00/17 3:43} Bc4 {+0.04/18 4:05} 3. Gb1
{-0.08/17 2:19} Sb4 {+0.08/17 2:37} 4. Sd2 {-0.20/17 2:28} Gd5
{+0.16/17 2:20} 5. Gb2 {-0.24/18 3:45} Gd4 {+0.20/17 2:02} 6. Rd1
{-0.28/17 5:06} Rc5 {+0.24/17 5:54} 7. Rb1 {-0.28/17 2:42} Ra5
{+0.24/16 6:35} 8. Re1 {-0.28/18 3:20} Bd5 {+0.24/18 5:29} 9. Rd1 Bc4
{+0.00/20 1.5} 10. Rb1 {-0.52/11 1.0} Bxa2 {+19.40/19 1.3} 11. Gxa2
{+1.96/11 0.4} Rxa2 {+299.92/33 1.4} 12. Kxa2 {+0.00/1} G@a3
{+299.94/34 1.8} 13. Ka1 {+0.00/1} P@a2# {+299.96/36 1.8}
{XBoard adjudication: pawn-drop mate} 1-0
(Note the initial moves with the long thinking times were not played by Nebiyu, but are from the opening line; I created a set of 'test positions' by truncating long-TC games of Shokidoki self-play at a position with near-zero score.)

User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Fri Aug 23, 2013 12:36 pm

Btw, can/does Nebiyu support Big Chess (16x16)? I know some Nebiyus handle 19x19 Go, so there is hope.

Daniel Shawul
Posts: 3746
Joined: Tue Mar 14, 2006 10:34 am
Location: Ethiopia
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by Daniel Shawul » Fri Aug 23, 2013 2:00 pm

Yes it can play it but I have not looked carefully to all the rules. The feature I added in the last version to determine piece values and piece square tables seems to be useful here. It says knight's values is half of bishop's... Anyway here is the game spec.

Code: Select all

variant bigchess normal 2
16 16 0
.*PpKkQqRrBbNn
rnb1rbnqknbr1bnr/pppppppnnppppppp/7pp7/16/16/16/16/16/16/16/16/16/16/7PP7/PPPPPPPNNPPPPPPP/RNB1RBNQKNBR1BNR w KQkq - 0 1
#PNBRQFEACWMOHIJGDVLSUKpnbrqfeacwmohijgdvlsuk
 PNBRQ................Kpnbrq................k
P  100  wpawn
p  100  bpawn
K 1000  king
k 1000  king
Q  900  queen
q  900  queen
R  500  rook
r  500  rook
B  400  bishop
b  400  bishop
N  300  knight
n  300  knight
2 16 16
45 2
And a test

Code: Select all

variant bigchess
setup (PNBRQ................Kpnbrq................k) 16x16+0_normal rnb1rbnqknbr
1bnr/pppppppnnppppppp/7pp7/16/16/16/16/16/16/16/16/16/16/7PP7/PPPPPPPNNPPPPPPP/R
NB1RBNQKNBR1BNR w KQkq - 0 1
d

            a b c d e f g h i j k l m n o p


            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
         16 r n b . r b n q k n b r . b n r * * * * * * * * * * * * 16
         15 p p p p p p p n n p p p p p p p * * * * * * * * * * * * 15
         14 . . . . . . . p p . . . . . . . * * * * * * * * * * * * 14
         13 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 13
         12 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 12
         11 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 11
         10 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 10
          9 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 9
          8 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 8
          7 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 7
          6 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 6
          5 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 5
          4 . . . . . . . . . . . . . . . . * * * * * * * * * * * * 4
          3 . . . . . . . P P . . . . . . . * * * * * * * * * * * * 3
          2 P P P P P P P N N P P P P P P P * * * * * * * * * * * * 2
          1 R N B . R B N Q K N B R . B N R * * * * * * * * * * * * 1
            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
            * * * * * * * * * * * * * * * * * * * * * * * * * * * *
            a b c d e f g h i j k l m n o p

                [Material: 11188 11188 ]
rnb1rbnqknbr1bnr/pppppppnnppppppp/7pp7/16/16/16/16/16/16/16/16/16/16/7PP7/PPPPPP
PNNPPPPPPP/RNB1RBNQKNBR1BNR w KQkq - 0 1

go
[search_time = 5557ms, max_time = 29250ms , moves_left 10, max_nodes 0]
3 34 0 391  b1c3  o16n14  c3e4  EBF=6.94
4 0 0 692  b1c3  o16n14  c3e4  n14l13  EBF=4.84
5 44 1 1948  b1c3  b15b14  f2f4  o16n14  c3e4  EBF=4.32
6 48 1 3719  b1c3  b15b14  c3e4  o16n14  e4g5  n14l13  EBF=3.74
7 62 3 10513  b1c3  a15a14  o1n3  o15o13  f2f4  o16n14  c3e4  EBF=3.58
7 30 6 25143  m2m4  m15m13  n1c12  n16c5  o1n3  o16m15  b1c3  EBF=4.09
8 24 10 49980  m2m4  m15m13  n1h7  n16h10  o1n3  e15e14  b1c3  o16m15  EBF=3.72
9 26 11 59047  m2m4  m15m13  n1h7  n16h10  o1n3  o16m15  b1c3  m15k14  c3e4  EBF
=3.25
10 38 23 139029  m2m4  m15m13  n1h7  n16h10  g2g3  h15i13  h1f3  f15f14  f3k8  k
15k13  EBF=3.15
11 28 34 215145  m2m4  m15m13  n1h7  n16h10  b1c3  g15g13  l2l4  f16g15  o1m2  o
16m15  m2k3  EBF=2.94
12 26 125 872387  m2m4  m15m13  n1h7  n16g9  o1n3  i15h13  d2d4  g9n2  b1c3  n2j
6  c1j8  j6f2  EBF=3.02
13 42 298 2190851  m2m4  m15m14  n1c12  e15e14  d2d4  n16g9  c12i6  g9h8  c1n12
 h8d4  n12k15  d4f2  o1m2  EBF=2.98
14 30 523 3906985  m2m4  m15m13  d2d4  n16g9  n1g8  d15d14  c1j8  c16j9  j8i9  o
16n14  o1n3  l15l14  b1d2  b16d15  EBF=2.87
nodes = 4212206 <72 qnodes> time = 5637ms nps = 747242
splits = 0 badsplits = 0
move m2m4

setup rnb1rbnqknbr1bnr/pppppppnnppppppp/7pp7/16/16/16/16/16/16/16/16/16/12P3/7PP
7/PPPPPPPNNPPP1PPP/RNB1RBNQKNBR1BNR b KQkq m3m4 0 1
pvalue
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
 20  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  8   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4

P = 100
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  8   8   8   8   8   8   8   8   8   8   8   8   8   8   8   8
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
  4   4   4   4   4   4   4   4   4   4   4   4   4   4   4   4
 20  20  20  20  20  20  20  20  20  20  20  20  20  20  20  20
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

p = 100
 12  20  20  20  20  20  20  20  20  20  20  20  20  20  20  12
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 12  20  20  20  20  20  20  20  20  20  20  20  20  20  20  12

K = 10000
 12  20  20  20  20  20  20  20  20  20  20  20  20  20  20  12
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 20  32  32  32  32  32  32  32  32  32  32  32  32  32  32  20
 12  20  20  20  20  20  20  20  20  20  20  20  20  20  20  12

k = 10000
180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180
180 188 188 188 188 188 188 188 188 188 188 188 188 188 188 180
180 188 196 196 196 196 196 196 196 196 196 196 196 196 188 180
180 188 196 204 204 204 204 204 204 204 204 204 204 196 188 180
180 188 196 204 212 212 212 212 212 212 212 212 204 196 188 180
180 188 196 204 212 220 220 220 220 220 220 212 204 196 188 180
180 188 196 204 212 220 228 228 228 228 220 212 204 196 188 180
180 188 196 204 212 220 228 236 236 228 220 212 204 196 188 180
180 188 196 204 212 220 228 236 236 228 220 212 204 196 188 180
180 188 196 204 212 220 228 228 228 228 220 212 204 196 188 180
180 188 196 204 212 220 220 220 220 220 220 212 204 196 188 180
180 188 196 204 212 212 212 212 212 212 212 212 204 196 188 180
180 188 196 204 204 204 204 204 204 204 204 204 204 196 188 180
180 188 196 196 196 196 196 196 196 196 196 196 196 196 188 180
180 188 188 188 188 188 188 188 188 188 188 188 188 188 188 180
180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180

Q = 1549
180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180
180 188 188 188 188 188 188 188 188 188 188 188 188 188 188 180
180 188 196 196 196 196 196 196 196 196 196 196 196 196 188 180
180 188 196 204 204 204 204 204 204 204 204 204 204 196 188 180
180 188 196 204 212 212 212 212 212 212 212 212 204 196 188 180
180 188 196 204 212 220 220 220 220 220 220 212 204 196 188 180
180 188 196 204 212 220 228 228 228 228 220 212 204 196 188 180
180 188 196 204 212 220 228 236 236 228 220 212 204 196 188 180
180 188 196 204 212 220 228 236 236 228 220 212 204 196 188 180
180 188 196 204 212 220 228 228 228 228 220 212 204 196 188 180
180 188 196 204 212 220 220 220 220 220 220 212 204 196 188 180
180 188 196 204 212 212 212 212 212 212 212 212 204 196 188 180
180 188 196 204 204 204 204 204 204 204 204 204 204 196 188 180
180 188 196 196 196 196 196 196 196 196 196 196 196 196 188 180
180 188 188 188 188 188 188 188 188 188 188 188 188 188 188 180
180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180

q = 1549
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

R = 1066
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

r = 1066
 60  60  60  60  60  60  60  60  60  60  60  60  60  60  60  60
 60  68  68  68  68  68  68  68  68  68  68  68  68  68  68  60
 60  68  76  76  76  76  76  76  76  76  76  76  76  76  68  60
 60  68  76  84  84  84  84  84  84  84  84  84  84  76  68  60
 60  68  76  84  92  92  92  92  92  92  92  92  84  76  68  60
 60  68  76  84  92 100 100 100 100 100 100  92  84  76  68  60
 60  68  76  84  92 100 108 108 108 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 116 116 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 116 116 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 108 108 108 100  92  84  76  68  60
 60  68  76  84  92 100 100 100 100 100 100  92  84  76  68  60
 60  68  76  84  92  92  92  92  92  92  92  92  84  76  68  60
 60  68  76  84  84  84  84  84  84  84  84  84  84  76  68  60
 60  68  76  76  76  76  76  76  76  76  76  76  76  76  68  60
 60  68  68  68  68  68  68  68  68  68  68  68  68  68  68  60
 60  60  60  60  60  60  60  60  60  60  60  60  60  60  60  60

B = 765
 60  60  60  60  60  60  60  60  60  60  60  60  60  60  60  60
 60  68  68  68  68  68  68  68  68  68  68  68  68  68  68  60
 60  68  76  76  76  76  76  76  76  76  76  76  76  76  68  60
 60  68  76  84  84  84  84  84  84  84  84  84  84  76  68  60
 60  68  76  84  92  92  92  92  92  92  92  92  84  76  68  60
 60  68  76  84  92 100 100 100 100 100 100  92  84  76  68  60
 60  68  76  84  92 100 108 108 108 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 116 116 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 116 116 108 100  92  84  76  68  60
 60  68  76  84  92 100 108 108 108 108 100  92  84  76  68  60
 60  68  76  84  92 100 100 100 100 100 100  92  84  76  68  60
 60  68  76  84  92  92  92  92  92  92  92  92  84  76  68  60
 60  68  76  84  84  84  84  84  84  84  84  84  84  76  68  60
 60  68  76  76  76  76  76  76  76  76  76  76  76  76  68  60
 60  68  68  68  68  68  68  68  68  68  68  68  68  68  68  60
 60  60  60  60  60  60  60  60  60  60  60  60  60  60  60  60

b = 765
  8  12  16  16  16  16  16  16  16  16  16  16  16  16  12   8
 12  16  24  24  24  24  24  24  24  24  24  24  24  24  16  12
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 12  16  24  24  24  24  24  24  24  24  24  24  24  24  16  12
  8  12  16  16  16  16  16  16  16  16  16  16  16  16  12   8

N = 338
  8  12  16  16  16  16  16  16  16  16  16  16  16  16  12   8
 12  16  24  24  24  24  24  24  24  24  24  24  24  24  16  12
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 16  24  32  32  32  32  32  32  32  32  32  32  32  32  24  16
 12  16  24  24  24  24  24  24  24  24  24  24  24  24  16  12
  8  12  16  16  16  16  16  16  16  16  16  16  16  16  12   8

n = 338

User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Fri Aug 23, 2013 5:01 pm

OK, great! Someone was asking for a Big Chess engine, and the only engine I have that can do boards that big would be HaChu. But since that is basically a Shogi engine it has no provision for e.p. capture.

Btw, just to give you an impression of the relative importance of those mini-Shogi rules: Out of the 160 test games I played, Nebiyu forfeited 14 by repetition, 4 by Pawn-drop mates, and 1 by perpetual checking. I guess it knows that perpetual checking is illegal, (or there would be far more perpetuals), but it probably does not recognize repetitions across captures. This is something I only fixed in Shokidoki just before going to Yokohama as well.

Code: Select all

&#91;Event "Computer Chess Game"&#93;
&#91;Site "MAKRO-PC"&#93;
&#91;Date "2013.08.22"&#93;
&#91;Round "90"&#93;
&#91;White "NebiyuAlien_1.43"&#93;
&#91;Black "Shokidoki Yokohama 2013"&#93;
&#91;Result "0-1"&#93;
&#91;TimeControl "40/60"&#93;
&#91;Variant "shogi"&#93;
&#91;FEN "rbsgk/4p/5/P4/KGSBR&#91;-&#93; w 0 1"&#93;
&#91;SetUp "1"&#93;

&#123;--------------
r b s g k
. . . . p
. . . . .
P . . . .
K G S B R
white to play
--------------&#125;
1. Sb2 Sb4 2. Bc2 &#123;+0.36/17 2&#58;59&#125; Bc4 &#123;+0.32/18 4&#58;24&#125; 3. Rd1
&#123;-0.36/17 3&#58;37&#125; Be2 &#123;+0.00/17 3&#58;16&#125; 4. Rc1 &#123;-0.56/17 21&#58;46&#125; Bc4
&#123;+0.40/18 2&#58;45&#125; 5. Re1 &#123;-0.44/18 6&#58;22&#125; Gd4 &#123;+0.48/18 4&#58;23&#125; 6. Rd1
&#123;-400.00/18 24&#58;47&#125; Gc3 &#123;+0.48/17 3&#58;44&#125; 7. Sxc3 &#123;-0.52/16 1&#58;34&#125; Sxc3
&#123;+0.64/16 5&#58;36&#125; 8. G@b3 &#123;-0.68/15 3&#58;53&#125; Bxb3 &#123;+1.52/15 2&#58;22&#125; 9. Bxb3
&#123;-0.56/15 6&#58;00&#125; S@e2 &#123;+0.56/14 2&#58;14&#125; 10. Rc1 &#123;-0.32/15 3&#58;41&#125; G@d4
&#123;+0.12/15 2&#58;43&#125; 11. B@c4 &#123;-0.16/15 5&#58;07&#125; e3 &#123;-0.60/15 5&#58;47&#125; 12. Rxc3
&#123;+1.52/16 4&#58;15&#125; Gxc3 &#123;-1.16/14 1&#58;57&#125; 13. S@b4 &#123;+0.96/15 3&#58;07&#125; Gxc4
&#123;-0.96/15 3&#58;55&#125; 14. Bxc4 B@d4 &#123;-0.92/10 2.1&#125; 15. G@b2 &#123;+1.90/19 1.9&#125; Bxb2
&#123;-1.08/11 4&#125; 16. Kxb2 &#123;+1.90/20 4&#125; G@d4 &#123;-2.12/11 7&#125; 17. Sxa5+ &#123;+1.70/19 8&#125;
Gxc4 &#123;+0.28/11 1.7&#125; 18. R@b5 &#123;+1.05/17 1.9&#125; R@c5 &#123;+0.96/11 0.9&#125; 19. Rxc5+
&#123;+2.25/21 3&#125; Gxc5 &#123;+0.88/11 0.8&#125; 20. B@c3 &#123;+2.85/18 1.5&#125; B@d4
&#123;+1.32/11 1.4&#125; 21. Bxd4 &#123;+1.85/18 1.9&#125; Gxd4 &#123;+1.20/11 3&#125; 22. R@b5
&#123;+1.65/17 1.9&#125; R@d5 &#123;+1.48/11 3&#125; 23. Rxd5+ &#123;+1.70/17 1.8&#125; Gxd5
&#123;+1.72/11 1.8&#125; 24. B@c3 &#123;+1.40/18 2.2&#125; B@d4 &#123;+3.20/11 1.7&#125; 25. Bxd4
&#123;+1.15/17 1.5&#125; Gxd4 &#123;+1.80/10 5&#125; 26. R@b5 &#123;+1.75/16 1.6&#125; R@d5
&#123;+1.60/10 1.3&#125; 27. Rxd5+ &#123;+2.50/18 1.9&#125; Gxd5 &#123;+2.04/10 0.8&#125; 28. B@c3
&#123;+2.50/18 2.1&#125; B@d4 &#123;+3.16/12 1.5&#125; 29. Bxd4 &#123;+2.10/18 2.0&#125; Gxd4
&#123;+1.56/11 1.3&#125; 30. R@c5 &#123;+1.25/17 2.3&#125; R@d5 &#123;+4.96/12 5&#125; 31. Rxd5+
&#123;+1.70/19 1.4&#125;
&#123;Xboard adjudication&#58; perpetual checking&#125; 0-1

phenri
Posts: 284
Joined: Tue Aug 13, 2013 7:44 am

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by phenri » Sun Sep 01, 2013 2:35 pm

Hello Daniel and H.G.

I started a match between NebiuAlien , but it crashed at the end of each match.

I am not able to provide the log file of Nebiu.

I have a few comments and questions:
Is it possible to avoid that Winboard suddenly closes after the "Fatal Error"?
Can you tell me what to put in the engine parameters for BigChess variant?
What I missed for not having a log file?

Otherwise, here is the WinBoard log file: winboard.debug.gz (257.99KB)
http://www.sendspace.com/file/k935ya

Here are some screenshots:
Image
Image
Image
Last edited by phenri on Sun Sep 01, 2013 2:48 pm, edited 1 time in total.

User avatar
hgm
Posts: 23606
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by hgm » Sun Sep 01, 2013 2:43 pm

The number of processors is set centrally in WinBoard, in the Common Engine Options dialog. The hash-tables size as well.

phenri
Posts: 284
Joined: Tue Aug 13, 2013 7:44 am

Re: NebiuAlien and mini-Shogi (For Daniel)

Post by phenri » Sun Sep 01, 2013 2:53 pm

Hi H.G, thanks for the quick reply.

But I had not finished writing my post, I sent in place of the preview. So I re-edited my post. :)
Last edited by phenri on Sun Sep 01, 2013 2:58 pm, edited 2 times in total.

Post Reply