Absolute ELO scale

Discussion of chess software programming and technical issues.

Moderators: hgm, Harvey Williamson, bob

Forum rules
This textbox is used to restore diagrams posted with the [d] tag before the upgrade.
User avatar
cdani
Posts: 2104
Joined: Sat Jan 18, 2014 9:24 am
Location: Andorra
Contact:

Re: Absolute ELO scale

Post by cdani » Sun Dec 18, 2016 3:06 pm

Laskos wrote:Can I ask you something: what time control, depth or nodes are needed to set in Cutechess-Cli for Random for it to work correctly in the shortest amount of time as a generator of random legal moves? I remember in the past I had some problems with it.
For example you can use
tc=inf depth=1
A game is really fast with this.

User avatar
Laskos
Posts: 9408
Joined: Wed Jul 26, 2006 8:21 pm
Full name: Kai Laskos

Re: Absolute ELO scale

Post by Laskos » Sun Dec 18, 2016 3:55 pm

cdani wrote:
Laskos wrote:Can I ask you something: what time control, depth or nodes are needed to set in Cutechess-Cli for Random for it to work correctly in the shortest amount of time as a generator of random legal moves? I remember in the past I had some problems with it.
For example you can use
tc=inf depth=1
A game is really fast with this.
Then why this result:

Code: Select all

Score of A-Random 5+0.05'' vs A-Random depth=1: 0 - 54 - 0  [0.000] 54
ELO difference: -inf +/- nan
54 Wins for depth=1.
It seems in your conditions Andscacs is playing depth=1 games rather than random moves. While 5''+0.05'' really plays randomly.

User avatar
cdani
Posts: 2104
Joined: Sat Jan 18, 2014 9:24 am
Location: Andorra
Contact:

Re: Absolute ELO scale

Post by cdani » Sun Dec 18, 2016 4:19 pm

Laskos wrote:
cdani wrote:
Laskos wrote:Can I ask you something: what time control, depth or nodes are needed to set in Cutechess-Cli for Random for it to work correctly in the shortest amount of time as a generator of random legal moves? I remember in the past I had some problems with it.
For example you can use
tc=inf depth=1
A game is really fast with this.
Then why this result:

Code: Select all

Score of A-Random 5+0.05'' vs A-Random depth=1: 0 - 54 - 0  [0.000] 54
ELO difference: -inf +/- nan
54 Wins for depth=1.
It seems in your conditions Andscacs is playing depth=1 games rather than random moves. While 5''+0.05'' really plays randomly.
I see. It needs at least depth 2 games to enter the main loop and play random moves.

Volker Annuss
Posts: 173
Joined: Mon Sep 03, 2007 7:15 am

Re: Absolute ELO scale

Post by Volker Annuss » Mon Dec 19, 2016 5:21 am

Yesterday I implemented what I see as a natural improvement to a random mover. It is an engine that behaves like a random mover with one exception. Whenever there is a mate in 1 it will mate. Here the results (W-L-D) from 100000 games random mover + mate vs random mover played with cutechess last night.

Code: Select all

Score of Arminius RND+MATE vs Arminius RND: 53276 - 5507 - 41217 [0.739]
ELO difference: 180.66 +/- 1.67

100000 of 100000 games finished.

User avatar
Laskos
Posts: 9408
Joined: Wed Jul 26, 2006 8:21 pm
Full name: Kai Laskos

Re: Absolute ELO scale

Post by Laskos » Mon Dec 19, 2016 5:31 am

cdani wrote:
Laskos wrote:
cdani wrote:
Laskos wrote:Can I ask you something: what time control, depth or nodes are needed to set in Cutechess-Cli for Random for it to work correctly in the shortest amount of time as a generator of random legal moves? I remember in the past I had some problems with it.
For example you can use
tc=inf depth=1
A game is really fast with this.
Then why this result:

Code: Select all

Score of A-Random 5+0.05'' vs A-Random depth=1: 0 - 54 - 0  [0.000] 54
ELO difference: -inf +/- nan
54 Wins for depth=1.
It seems in your conditions Andscacs is playing depth=1 games rather than random moves. While 5''+0.05'' really plays randomly.
I see. It needs at least depth 2 games to enter the main loop and play random moves.
Daniel, is there something in Andscacs which prevents it playing for more than 500 and a few moves? I get "disconnect" in Cutechess-Cli for this kind of games between A-worst engines (at fixed depth, so there is no time forfeit issue, but it happens in any condition):

Code: Select all

[Event "?"]
[Site "?"]
[Date "2016.12.19"]
[Round "1"]
[White "AL2"]
[Black "AL1"]
[Result "0-1"]
[FEN "rnbqkbnr/1ppppp1p/p7/5Pp1/8/8/PPPPP1PP/RNBQKBNR w KQkq g6 0 1"]
[PlyCount "1014"]
[SetUp "1"]
[Termination "abandoned"]
[TimeControl "inf"]

1. Kf2 {-1.73/2 0.004s} h6 {-0.34/2 0.005s} 2. Kg3 {-2.63/2 0.004s}
f6 {+0.04/2 0.004s} 3. Kf3 {-2.23/2 0.003s} Ra7 {-0.41/2 0.003s}
4. Ke4 {-2.63/2 0.007s} Rh7 {+0.38/2 0.003s} 5. Kd5 {-3.24/2 0.005s}
Rh8 {+0.09/2 0.003s} 6. Kc5 {-3.47/2 0.003s} Rh7 {+0.01/2 0.003s}
7. Nh3 {-4.44/2 0.003s} Rh8 {+0.01/2 0.003s} 8. Nf4 {-5.65/2 0.007s}
g4 {-0.21/2 0.006s} 9. Ne6 {-6.54/2 0.003s} Kf7 {-7.24/2 0.003s}
10. Kd5 {-8.31/2 0.004s} a5 {-9.50/2 0.008s} 11. Nxc7 {-13.16/2 0.006s}
Qe8 {-7.16/2 0.005s} 12. Ne6 {-9.27/2 0.004s} Qd8 {-8.91/2 0.003s}
13. Ng7 {-9.64/2 0.004s} Qe8 {-7.16/2 0.003s} 14. Kc4 {-5.30/2 0.004s}
g3 {-8.21/2 0.004s} 15. h3 {-5.31/2 0.004s} Ra8 {-7.79/2 0.003s}
16. Rh2 {-5.91/2 0.003s} Rh7 {-5.05/2 0.004s} 17. Nh5 {-6.56/2 0.004s}
Rg7 {-1.53/2 0.003s} 18. Kb5 {-10.60/2 0.004s} Ra7 {-0.52/2 0.004s}
19. Nf4 {-11.19/2 0.004s} Rg6 {-2.74/2 0.003s} 20. Ne6 {-9.78/2 0.004s}
Qd8 {-10.46/2 0.003s} 21. Kc5 {-7.08/2 0.004s} Bg7 {-9.91/2 0.004s}
22. Nc7 {-15.63/2 0.005s} Qe8 {-3.42/2 0.004s} 23. Nb5 {-7.88/2 0.005s}
e6 {-4.95/2 0.003s} 24. Kd6 {-6.64/2 0.005s} a4 {+0.60/2 0.004s}
25. Nc7 {-M2/1 0.002s} Na6 {-8.32/2 0.004s} 26. a3 {-M2/1 0.002s}
Ra8 {-8.25/2 0.003s} 27. b3 {-M2/1 0.002s} Ra7 {-8.40/2 0.004s}
28. c3 {-M2/1 0.002s} Ra8 {-8.43/2 0.004s} 29. d3 {-M2/1 0.002s}
Ra7 {-9.09/2 0.004s} 30. e3 {-M2/1 0.002s} Bh8 {-10.75/2 0.003s}
31. b4 {-M2/1 0.002s} Kg7 {-11.06/2 0.004s} 32. c4 {-M2/1 0.002s}
Kf7 {-11.40/2 0.004s} 33. d4 {-M2/1 0.002s} Kg7 {-11.71/2 0.004s}
34. e4 {-M2/1 0.002s} Ra8 {-12.42/2 0.004s} 35. h4 {-M2/1 0.002s}
Ra7 {-12.49/2 0.004s} 36. b5 {-M2/1 0.002s} Ra8 {-12.88/2 0.004s}
37. c5 {-M2/1 0.002s} Rb8 {-13.20/2 0.005s} 38. d5 {-M2/1 0.002s}
Ra8 {-13.30/2 0.005s} 39. e5 {-M2/1 0.002s} Ra7 {-12.96/2 0.005s}
40. h5 {-M2/1 0.002s} Kh7 {-17.80/2 0.005s} 41. b6 {-M2/1 0.002s}
Nb8 {-25.07/2 0.005s} 42. c6 {-M2/1 0.002s} Na6 {-21.73/2 0.007s}
43. Nd2 {-M2/1 0.002s} Nb8 {-25.19/2 0.005s} 44. Nb3 {-M2/1 0.002s}
Na6 {-21.76/2 0.005s} 45. Nd4 {-M2/1 0.002s} Nb8 {-25.90/2 0.005s}
46. Nc2 {-M2/1 0.002s} Na6 {-22.07/2 0.005s} 47. Ne1 {-M2/1 0.002s}
Nb8 {-24.14/2 0.005s} 48. Nd3 {-M2/1 0.002s} Na6 {-22.65/2 0.006s}
49. Nb2 {-M2/1 0.002s} Nb8 {-25.71/2 0.005s} 50. Nc4 {-M2/1 0.002s}
Na6 {-23.21/2 0.005s} 51. Ne3 {-M2/1 0.002s} Nb8 {-25.51/2 0.005s}
52. Ng4 {-M2/1 0.002s} exd5 {-24.29/2 0.006s} 53. Qxd5 {-M2/1 0.004s}
Qd8 {-M4/2 0.007s} 54. e6 {-M2/1 0.003s} Qe8 {-34.48/2 0.004s}
55. e7 {-M2/1 0.002s} Kg7 {-M4/2 0.005s} 56. Nf2 {-M2/1 0.002s}
Na6 {-M4/2 0.005s} 57. Nd1 {-M2/1 0.002s} Nb4 {-M4/2 0.006s}
58. Nb2 {-M2/1 0.002s} Na2 {-M4/2 0.006s} 59. Nd1 {-M2/1 0.002s}
Nc3 {-M4/2 0.004s} 60. Nb2 {-M2/1 0.002s} Nb1 {-M4/2 0.004s}
61. Nd1 {-M2/1 0.002s} Nd2 {-M4/2 0.004s} 62. Nb2 {-M2/1 0.002s}
Nb3 {-M4/2 0.004s} 63. Nd1 {-M2/1 0.002s} Nd4 {-M4/2 0.004s}
64. Nb2 {-M2/1 0.002s} Nc2 {-M4/2 0.004s} 65. Nd1 {-M2/1 0.002s}
Ne1 {-M4/2 0.004s} 66. Nb2 {-M2/1 0.002s} Nd3 {-M4/2 0.004s}
67. Nd1 {-M2/1 0.002s} Nb2 {-M4/2 0.004s} 68. Nf2 {-M2/1 0.002s}
Nd1 {-M4/2 0.004s} 69. Nh1 {-M2/1 0.002s} Nb2 {-M4/2 0.004s}
70. Bd2 {-M2/1 0.002s} Nd1 {-M4/2 0.004s} 71. Nf2 {-M2/1 0.002s}
Nb2 {-M4/2 0.005s} 72. Nd1 {-M2/1 0.002s} Nd3 {-M4/2 0.005s}
73. Nb2 {-M2/1 0.002s} Nc1 {-M4/2 0.005s} 74. Nd1 {-M2/1 0.002s}
Na2 {-M4/2 0.005s} 75. Nb2 {-M2/1 0.002s} Nc3 {-M4/2 0.004s}
76. Nd1 {-M2/1 0.002s} Nb1 {-M4/2 0.004s} 77. Nb2 {-M2/1 0.002s}
Ra5 {-M4/2 0.004s} 78. Nd1 {-M2/1 0.002s} Nc3 {-M4/2 0.007s}
79. Nb2 {-M2/1 0.002s} Nd1 {-M4/2 0.005s} 80. Nd3 {-M2/1 0.002s}
Nb2 {-M4/2 0.005s} 81. Nc1 {-M2/1 0.002s} Nd1 {-M4/2 0.006s}
82. Na2 {-M2/1 0.002s} Nb2 {-M4/2 0.006s} 83. Nc3 {-M2/1 0.002s}
Nd1 {-M4/2 0.005s} 84. Nb1 {-M2/1 0.002s} Nb2 {-M4/2 0.005s}
85. Be2 {-M2/1 0.002s} Nd1 {-M4/2 0.005s} 86. Nc3 {-M2/1 0.002s}
Nb2 {-M4/2 0.006s} 87. Nd1 {-M2/1 0.002s} Nd3 {-M4/2 0.005s}
88. Nb2 {-M2/1 0.002s} Nc1 {-M4/2 0.008s} 89. Nd1 {-M2/1 0.002s}
Na2 {-M4/2 0.006s} 90. Nb2 {-M2/1 0.002s} Nc3 {-M4/2 0.006s}
91. Nd1 {-M2/1 0.002s} Nb1 {-M4/2 0.005s} 92. Nb2 {-M2/1 0.002s}
Rb5 {-M4/2 0.006s} 93. Nd1 {-M2/1 0.002s} Nc3 {-M4/2 0.008s}
94. Nb2 {-M2/1 0.002s} Nd1 {-M4/2 0.005s} 95. Nd3 {-M2/1 0.002s}
Nb2 {-M4/2 0.006s} 96. Nc1 {-M2/1 0.002s} Nd1 {-M4/2 0.007s}
97. Na2 {-M2/1 0.002s} Nb2 {-M4/2 0.006s} 98. Nc3 {-M2/1 0.002s}
Nd1 {-M4/2 0.005s} 99. Nb1 {-M2/1 0.002s} Nb2 {-M4/2 0.008s}
100. Bc1 {-M2/1 0.003s} Nd1 {-M4/2 0.006s} 101. Nd2 {-M2/1 0.002s}
Nb2 {-M4/2 0.005s} 102. Nf1 {-M2/1 0.002s} Nd1 {-M4/2 0.005s}
103. Ne3 {-M2/1 0.002s} Nb2 {-M4/2 0.006s} 104. Nd1 {-M2/1 0.002s}
Nd3 {-M4/2 0.007s} 105. fxg6 {-M2/1 0.003s} f5 {-M2/1 0.003s}
106. Nb2 {-M2/1 0.002s} f4 {-M2/1 0.002s} 107. Nd1 {-M2/1 0.002s}
f3 {-M2/1 0.002s} 108. Nb2 {-M2/1 0.002s} f2 {-M2/1 0.002s}
109. Nd1 {-M2/1 0.002s} Ne1 {-M2/1 0.002s} 110. Nb2 {-M2/1 0.002s}
Nc2 {-M2/1 0.002s} 111. Nd1 {-M2/1 0.002s} Ne3 {-M2/1 0.002s}
112. Nb2 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 113. Nd3 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 114. Ne1 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
115. Nc2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 116. Ne3 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 117. Nf1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
118. Nd2 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 119. Nb1 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 120. Nc3 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
121. Na2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 122. Bd2 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 123. Nc1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
124. Nb3 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 125. Nd4 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 126. Nc2 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
127. Ne1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 128. Be3 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 129. Nc2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
130. Nb4 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 131. Na2 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 132. Nc1 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
133. Bf1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 134. Na2 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 135. Nc3 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
136. Nb1 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 137. Nd2 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 138. Nf3 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
139. Ne1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 140. Nc2 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 141. Bd3 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
142. Ne1 {-M2/1 0.003s} Nd1 {-M2/1 0.002s} 143. Bb1 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 144. Nc2 {-M2/1 0.003s} Nd1 {-M2/1 0.002s}
145. Nb4 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 146. Na2 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 147. Nc1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
148. Ne2 {-M2/1 0.003s} Nd1 {-M2/1 0.002s} 149. Ng1 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 150. Nh3 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
151. Ng5 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 152. Nf3 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 153. Nd2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s}
154. Nf1 {-M2/1 0.002s} Nd1 {-M2/1 0.002s} 155. Ba2 {-M2/1 0.002s}
Nb2 {-M2/1 0.002s} 156. Nd2 {-M2/1 0.002s} Nd1 {-M2/1 0.002s}
157. Nb1 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 158. Nc3 {-M2/1 0.002s}
bxc6 {-M2/1 0.003s} 159. b7 {-M2/1 0.002s} c5 {-M2/1 0.002s}
160. Nb1 {-M2/1 0.003s} c4 {-M2/1 0.002s} 161. Nd2 {-M2/1 0.002s}
c3 {-M2/1 0.002s} 162. Nb1 {-M2/1 0.002s} c2 {-M2/1 0.002s}
163. Nd2 {-M2/1 0.002s} Nd1 {-M2/1 0.003s} 164. Nb1 {-M2/1 0.002s}
Nc3 {-M2/1 0.002s} 165. Nd2 {-M2/1 0.003s} Nb1 {-M2/1 0.003s}
166. Nf1 {-M2/1 0.003s} Nd2 {-M2/1 0.003s} 167. Bb1 {-M2/1 0.003s}
Nb3 {-M2/1 0.002s} 168. Nd2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
169. Nf1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 170. Nd2 {-M2/1 0.002s}
Nc3 {-M2/1 0.002s} 171. Nf1 {-M2/1 0.003s} Nd1 {-M2/1 0.002s}
172. Nd2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 173. Nf1 {-M2/1 0.002s}
Nd3 {-M2/1 0.002s} 174. Nd2 {-M2/1 0.002s} Ne1 {-M2/1 0.002s}
175. Nf1 {-M2/1 0.003s} Nf3 {-M2/1 0.002s} 176. Nd2 {-M2/1 0.002s}
Ng1 {-M2/1 0.002s} 177. Nf1 {-M2/1 0.002s} Ne2 {-M2/1 0.002s}
178. Nd2 {-M2/1 0.002s} Nd4 {-M2/1 0.002s} 179. Nf1 {-M2/1 0.002s}
Nc6 {-M2/1 0.002s} 180. Nd2 {-M2/1 0.002s} Nb4 {-M2/1 0.002s}
181. Nf1 {-M2/1 0.002s} Na6 {-M2/1 0.002s} 182. Nd2 {-M2/1 0.002s}
Nc5 {-M2/1 0.002s} 183. Nf1 {-M2/1 0.002s} Rb2 {-M2/1 0.002s}
184. Nd2 {-M2/1 0.002s} Nb3 {-M2/1 0.002s} 185. Nf1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 186. Nd2 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
187. Nf1 {-M2/1 0.003s} Nc3 {-M2/1 0.002s} 188. Nd2 {-M2/1 0.002s}
Nd1 {-M2/1 0.002s} 189. Nf1 {-M2/1 0.002s} Ra2 {-M2/1 0.002s}
190. Nd2 {-M2/1 0.002s} Nb2 {-M2/1 0.002s} 191. Nf1 {-M2/1 0.002s}
Nd3 {-M2/1 0.002s} 192. Nd2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
193. Nf1 {-M2/1 0.002s} Ne2 {-M2/1 0.002s} 194. Nd2 {-M2/1 0.002s}
Ng1 {-M2/1 0.002s} 195. Nf1 {-M2/1 0.002s} Nf3 {-M2/1 0.002s}
196. Nd2 {-M2/1 0.002s} Ne1 {-M2/1 0.002s} 197. Nf1 {-M2/1 0.002s}
Qf7 {-M2/1 0.002s} 198. Nd2 {-M2/1 0.002s} Nd3 {-M2/1 0.003s}
199. Nf1 {-M2/1 0.003s} Nc1 {-M2/1 0.002s} 200. Nd2 {-M2/1 0.002s}
Ne2 {-M2/1 0.003s} 201. Nf1 {-M2/1 0.003s} Ng1 {-M2/1 0.003s}
202. Nd2 {-M2/1 0.002s} Nf3 {-M2/1 0.002s} 203. Nf1 {-M2/1 0.003s}
Nd2 {-M2/1 0.002s} 204. Bf4 {-M2/1 0.003s} Nb3 {-M2/1 0.002s}
205. Nd2 {-M2/1 0.003s} Nc1 {-M2/1 0.003s} 206. Nf1 {-M2/1 0.003s}
Ne2 {-M2/1 0.003s} 207. Nd2 {-M2/1 0.003s} Ng1 {-M2/1 0.003s}
208. Nf1 {-M2/1 0.004s} Nf3 {-M2/1 0.003s} 209. Nd2 {-M2/1 0.003s}
Ne1 {-M2/1 0.004s} 210. Nf1 {-M2/1 0.004s} Nd3 {-M2/1 0.002s}
211. Nd2 {-M2/1 0.003s} Nb2 {-M2/1 0.003s} 212. Nf1 {-M2/1 0.003s}
cxb1=Q {-M2/1 0.005s} 213. Ne3 {-M2/1 0.004s} Nd1 {-M2/1 0.003s}
214. Nf1 {-M2/1 0.003s} Nc3 {-M2/1 0.003s} 215. Nd2 {-M2/1 0.003s}
Nd1 {-M2/1 0.003s} 216. Nb3 {-M2/1 0.003s} Nb2 {-M2/1 0.003s}
217. Nc1 {-M2/1 0.003s} Nd1 {-M2/1 0.003s} 218. Ne2 {-M2/1 0.003s}
Nb2 {-M2/1 0.003s} 219. Ng1 {-M2/1 0.003s} Nd1 {-M2/1 0.003s}
220. Nf3 {-M2/1 0.003s} Nb2 {-M2/1 0.003s} 221. Ne1 {-M2/1 0.003s}
Nd1 {-M2/1 0.003s} 222. Nc2 {-M2/1 0.004s} Nb2 {-M2/1 0.003s}
223. Nb4 {-M2/1 0.003s} Nd1 {-M2/1 0.003s} 224. Nd3 {-M2/1 0.003s}
Nb2 {-M2/1 0.002s} 225. Nc5 {-M2/1 0.003s} Nd1 {-M2/1 0.003s}
226. Ne4 {-M2/1 0.003s} Nb2 {-M2/1 0.003s} 227. Nd2 {-M2/1 0.003s}
Nd3 {-M2/1 0.002s} 228. Qf5 {-M2/1 0.004s} Nc1 {-M2/1 0.003s}
229. Qd5 {-M2/1 0.003s} Ne2 {-M2/1 0.003s} 230. Nf1 {-M2/1 0.003s}
Nc1 {-M2/1 0.002s} 231. Ke5 {-M2/1 0.004s} Ne2 {-M2/1 0.007s}
232. Nd2 {-M2/1 0.003s} Nc1 {-M2/1 0.005s} 233. Nb3 {-M2/1 0.004s}
Ne2 {-M2/1 0.011s} 234. Nc1 {-M2/1 0.004s} Ng1 {-M2/1 0.007s}
235. Ne2 {-M2/1 0.004s} Nh3 {-M2/1 0.014s} 236. Nc1 {-M2/1 0.004s}
Nf6 {-M2/1 0.006s} 237. Nb5 {-M2/1 0.003s} Ng1 {-M2/1 0.006s}
238. Ne2 {-M2/1 0.004s} Nh3 {-M2/1 0.005s} 239. Ng1 {-M2/1 0.004s}
Ne4 {-M2/1 0.012s} 240. Ne2 {-M2/1 0.004s} Ng1 {-M2/1 0.005s}
241. Nc1 {-M2/1 0.003s} Ne2 {-M2/1 0.004s} 242. Nb3 {-M2/1 0.004s}
Nc1 {-M2/1 0.004s} 243. Nd2 {-M2/1 0.003s} Ne2 {-M2/1 0.006s}
244. Nf1 {-M2/1 0.003s} Nc1 {-M2/1 0.003s} 245. Ne3 {-M2/1 0.003s}
Ne2 {-M2/1 0.006s} 246. Nd1 {-M2/1 0.004s} Nc1 {-M2/1 0.003s}
247. Nb2 {-M2/1 0.004s} Ne2 {-M2/1 0.004s} 248. Nc3 {-M2/1 0.003s}
Nc1 {-M2/1 0.003s} 249. Nbd1 {-M2/1 0.003s} Ne2 {-M2/1 0.003s}
250. Ne3 {-M2/1 0.003s} Nc1 {-M2/1 0.005s} 251. Ncd1 {-M2/1 0.003s}
Ne2 {-M2/1 0.005s} 252. Nb2 {-M2/1 0.003s} Nc1 {-M2/1 0.005s}
253. Nbc4 {-M2/1 0.003s} Ne2 {-M2/1 0.006s} 254. Nd1 {-M2/1 0.004s}
Nc1 {-M2/1 0.002s} 255. Ndb2 {-M2/1 0.003s} Ne2 {-M2/1 0.002s}
256. Nd2 {-M2/1 0.003s} Nc1 {-M2/1 0.004s} 257. Nd1 {-M2/1 0.003s}
Ne2 {-M2/1 0.005s} 258. Nc3 {-M2/1 0.003s} Nc1 {-M2/1 0.004s}
259. Nf1 {-M2/1 0.003s} Ne2 {-M2/1 0.005s} 260. Nd1 {-M2/1 0.003s}
Nc1 {-M2/1 0.003s} 261. Nb2 {-M2/1 0.003s} Ne2 {-M2/1 0.002s}
262. Rh1 {-M2/1 0.003s} Nxf4 {-M2/1 0.004s} 263. Nd2 {-M2/1 0.003s}
Nc3 {-M2/1 0.003s} 264. Nd1 {-M2/1 0.003s} Nce2 {-M2/1 0.006s}
265. Nb2 {-M2/1 0.003s} Nc1 {-M2/1 0.004s} 266. Nd1 {-M2/1 0.003s}
Nb3 {-M2/1 0.007s} 267. Nb2 {-M2/1 0.003s} Na5 {-M2/1 0.004s}
268. Nd1 {-M2/1 0.003s} Ne2 {-M2/1 0.006s} 269. Nb2 {-M2/1 0.004s}
Nc1 {-M2/1 0.004s} 270. Nd1 {-M2/1 0.003s} Ncb3 {-M2/1 0.004s}
271. Nb2 {-M2/1 0.004s} Nc5 {-M2/1 0.003s} 272. Nd1 {-M2/1 0.003s}
Nab3 {-M2/1 0.007s} 273. Nb2 {-M2/1 0.003s} Nc1 {-M2/1 0.003s}
274. Nd1 {-M2/1 0.003s} Ne2 {-M2/1 0.003s} 275. Nb2 {-M2/1 0.004s}
Ng1 {-M2/1 0.004s} 276. Nd1 {-M2/1 0.003s} Nh3 {-M2/1 0.005s}
277. Nb2 {-M2/1 0.003s} Na6 {-M2/1 0.003s} 278. Nd1 {-M2/1 0.003s}
Ng1 {-M2/1 0.005s} 279. Nb2 {-M2/1 0.003s} Ne2 {-M2/1 0.005s}
280. Nd1 {-M2/1 0.003s} Nc1 {-M2/1 0.003s} 281. Nb2 {-M2/1 0.004s}
Nb4 {-M2/1 0.004s} 282. Nd1 {-M2/1 0.003s} Ne2 {-M2/1 0.002s}
283. Nb2 {-M2/1 0.003s} Nc3 {-M2/1 0.003s} 284. Nd1 {-M2/1 0.003s}
Ne4 {-M2/1 0.004s} 285. Nb2 {-M2/1 0.004s} Nc2 {-M2/1 0.002s}
286. Qxa2 {-M4/2 0.014s} Ne1 {-M2/1 0.003s} 287. Qd5 {-M2/1 0.003s}
Nc2 {-M2/1 0.002s} 288. Qd3 {-M4/2 0.012s} Qf4+ {-14.62/2 0.007s}
289. Kd5 {-M4/2 0.006s} Qf8 {-6.63/2 0.007s} 290. Qc4 {-M2/1 0.003s}
Kf6 {-M6/2 0.008s} 291. Nd1 {-M4/2 0.011s} Nxd2 {-M4/2 0.007s}
292. g7 {-M4/2 0.012s} Kf7 {-M2/2 0.009s} 293. Qb5 {-M6/2 0.016s}
d6 {-M2/1 0.002s} 294. e8=N {-M2/1 0.005s} Nf1 {-12.08/2 0.007s}
295. gxh8=Q {-M4/2 0.012s} Qe7 {-M2/1 0.002s} 296. Ne3 {-M2/1 0.004s}
Nd2 {-M2/1 0.002s} 297. Nd1 {-M2/1 0.004s} Ne1 {-M2/1 0.002s}
298. Nb2 {-M2/1 0.004s} Nc2 {-M2/1 0.003s} 299. Qf1 {-M2/1 0.003s}
Qe2 {-M4/2 0.008s} 300. Nd1 {-M4/2 0.012s} Bd7 {-M12/2 0.007s}
301. Rxb1 {-M2/1 0.005s} Bb5 {-M4/2 0.006s} 302. Nb2 {-M2/1 0.002s}
Na1 {-M4/2 0.006s} 303. Nf6 {-M2/1 0.002s} Ke7 {-M4/2 0.005s}
304. Nd1 {-M2/1 0.002s} Nxf1 {-M4/2 0.006s} 305. b8=Q {-M2/1 0.002s}
Nh2 {-M2/1 0.002s} 306. Nb2 {-M2/1 0.003s} Nc2 {-M2/1 0.002s}
307. Nd1 {-M2/1 0.002s} Ne1 {-M2/1 0.003s} 308. Nb2 {-M2/1 0.003s}
Nd3 {-M2/1 0.002s} 309. Nd1 {-M2/1 0.002s} Nf1 {-M2/1 0.002s}
310. Nb2 {-M2/1 0.002s} Nd2 {-M2/1 0.002s} 311. Nd1 {-M2/1 0.002s}
Nb3 {-M2/1 0.003s} 312. Nb2 {-M2/1 0.002s} Na1 {-M2/1 0.003s}
313. Nd1 {-M2/1 0.002s} Nc2 {-M2/1 0.003s} 314. Nb2 {-M2/1 0.002s}
Nce1 {-M2/1 0.003s} 315. Nd1 {-M2/1 0.002s} Nf3 {-M2/1 0.003s}
316. Nb2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 317. Nd1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 318. Nb2 {-M2/1 0.002s} Ne1 {-M2/1 0.003s}
319. Nd1 {-M2/1 0.002s} Nc2 {-M2/1 0.002s} 320. Nb2 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 321. Nd1 {-M2/1 0.002s} Nb3 {-M2/1 0.002s}
322. Nb2 {-M2/1 0.002s} Nca1 {-M2/1 0.003s} 323. Nd1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 324. Nb2 {-M2/1 0.003s} Nab3 {-M2/1 0.003s}
325. Nd1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 326. Nb2 {-M2/1 0.002s}
Na1 {-M2/1 0.002s} 327. Nd1 {-M2/1 0.002s} Bd3 {-M2/1 0.002s}
328. Ne4 {-M2/1 0.002s} Nc2 {-M2/1 0.002s} 329. Nb2 {-M2/1 0.003s}
Nc1 {-M2/1 0.002s} 330. Nd1 {-M2/1 0.002s} Nb3 {-M2/1 0.003s}
331. Nb2 {-M2/1 0.003s} Nca1 {-M2/1 0.003s} 332. Nd1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 333. Nb2 {-M2/1 0.002s} Nab3 {-M2/1 0.002s}
334. Nd1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 335. Nb2 {-M2/1 0.002s}
Na1 {-M2/1 0.003s} 336. Nc4 {-M2/1 0.002s} Nc2 {-M2/1 0.002s}
337. Na5 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 338. Nb3 {-M2/1 0.003s}
Na2 {-M2/1 0.002s} 339. Na1 {-M2/1 0.002s} Nc1 {-M2/1 0.003s}
340. Rb2 {-M2/1 0.002s} Na2 {-M2/1 0.003s} 341. Nb3 {-M2/1 0.002s}
Nc1 {-M2/1 0.003s} 342. Nd4 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
343. Nf3 {-M2/1 0.003s} Nc1 {-M2/1 0.003s} 344. Ne1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 345. Rf1 {-M2/1 0.002s} Nc1 {-M2/1 0.003s}
346. Nf3 {-M2/1 0.003s} Na2 {-M2/1 0.002s} 347. Ng1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 348. Nh3 {-M2/1 0.002s} Na2 {-M2/1 0.003s}
349. Nf4 {-M2/1 0.003s} Nc1 {-M2/1 0.003s} 350. Ne6 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 351. Nc7 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
352. Nb5 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 353. Na7 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 354. Rd1 {-M2/1 0.002s} Kd7 {-M2/1 0.002s}
355. Nxf2 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 356. Nh1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 357. Nb5 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
358. Nf2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 359. Nh3 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 360. Ng1 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
361. Nf3 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 362. Ne1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 363. Nc3 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
364. Nf3 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 365. Nb1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 366. Nbd2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
367. Nf1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 368. N1h2 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 369. Ng4 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
370. Ne1 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 371. Nf2 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 372. Nf3 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
373. Nh1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 374. Ng1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 375. Nh3 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
376. N1f2 {-M2/1 0.002s} Nc1 {-M2/1 0.003s} 377. Ne4 {-M2/1 0.003s}
Na2 {-M2/1 0.002s} 378. Ng1 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
379. Nf3 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 380. Ne1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 381. Ng5 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
382. Nef3 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 383. Nd4 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 384. Nb3 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
385. Na1 {-M2/1 0.003s} Na2 {-M2/1 0.002s} 386. Nf3 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 387. Nb3 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
388. Nc1 {-M2/1 0.002s} Na1 {-M2/1 0.002s} 389. Nb3 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 390. Nbd4 {-M2/1 0.003s} Nc2 {-M2/1 0.002s}
391. Ne1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 392. Nef3 {-M2/1 0.002s}
Na1 {-M2/1 0.002s} 393. Ne1 {-M2/1 0.002s} Nb3 {-M2/1 0.002s}
394. Nec2 {-M2/1 0.002s} Nac1 {-M2/1 0.002s} 395. Na1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 396. Ndc2 {-M2/1 0.002s} Nac1 {-M2/1 0.002s}
397. Ne1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 398. Nac2 {-M2/1 0.002s}
Nac1 {-M2/1 0.002s} 399. Nf3 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
400. Na1 {-M2/1 0.002s} Nac1 {-M2/1 0.002s} 401. Ng1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 402. Nc2 {-M2/1 0.002s} Nac1 {-M2/1 0.002s}
403. Nh3 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 404. Na1 {-M2/1 0.002s}
Nac1 {-M2/1 0.002s} 405. Nxb3 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
406. Na1 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 407. Nc2 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 408. Ne1 {-M2/1 0.003s} Nc1 {-M2/1 0.002s}
409. Nf3 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 410. Nfg1 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 411. Nf4 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
412. Nf3 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 413. Ne1 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 414. Nc2 {-M2/1 0.002s} Nc1 {-M2/1 0.002s}
415. Na1 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 416. Ne6 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 417. Nc2 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
418. Nb4 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 419. Na2 {-M2/1 0.003s}
Nb3 {-M2/1 0.002s} 420. Nc1 {-M2/1 0.002s} Na1 {-M2/1 0.002s}
421. Na2 {-M2/1 0.002s} Nc2 {-M2/1 0.002s} 422. Nc1 {-M2/1 0.002s}
Ne1 {-M2/1 0.002s} 423. Na2 {-M2/1 0.002s} Nf3 {-M2/1 0.002s}
424. Nc1 {-M2/1 0.002s} Ng1 {-M2/1 0.002s} 425. Na2 {-M2/1 0.002s}
Nh3 {-M2/1 0.002s} 426. Nc1 {-M2/1 0.003s} Nf2 {-M2/1 0.002s}
427. Na2 {-M2/1 0.002s} Nh1 {-M2/1 0.002s} 428. Nc1 {-M2/1 0.002s}
Bb1 {-M2/1 0.002s} 429. Na2 {-M2/1 0.003s} Nf2 {-M2/1 0.002s}
430. Nc1 {-M2/1 0.003s} Nd3 {-M2/1 0.002s} 431. Nd4 {-M2/1 0.002s}
Ne1 {-M2/1 0.002s} 432. Na2 {-M2/1 0.002s} Nc2 {-M2/1 0.002s}
433. Nc1 {-M2/1 0.003s} Na1 {-M2/1 0.002s} 434. Na2 {-M2/1 0.002s}
Nb3 {-M2/1 0.002s} 435. Nc1 {-M2/1 0.002s} Nd2 {-M2/1 0.002s}
436. Na2 {-M2/1 0.002s} Nf1 {-M2/1 0.002s} 437. Nc1 {-M2/1 0.003s}
Nh2 {-M2/1 0.002s} 438. Na2 {-M2/1 0.002s} Nf3 {-M2/1 0.002s}
439. Nc1 {-M2/1 0.002s} Ng1 {-M2/1 0.002s} 440. Na2 {-M2/1 0.002s}
Nh3 {-M2/1 0.002s} 441. Nc1 {-M2/1 0.003s} Nf2 {-M2/1 0.002s}
442. Na2 {-M2/1 0.002s} Nh1 {-M2/1 0.002s} 443. Nc1 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 444. Na2 {-M2/1 0.003s} Nf2 {-M2/1 0.002s}
445. Nc1 {-M2/1 0.002s} Nd3 {-M2/1 0.002s} 446. Na2 {-M2/1 0.002s}
Nc1 {-M2/1 0.002s} 447. Nb4 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
448. Na6 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 449. Nb3 {-M2/1 0.002s}
Na2 {-M2/1 0.002s} 450. Na1 {-M2/1 0.003s} Nc1 {-M2/1 0.002s}
451. Nb4 {-M2/1 0.002s} Na2 {-M2/1 0.002s} 452. Nb3 {-M2/1 0.003s}
Nc1 {-M2/1 0.002s} 453. Na5 {-M2/1 0.002s} Na2 {-M2/1 0.002s}
454. Nbc6 {-M2/1 0.002s} Nc1 {-M2/1 0.002s} 455. Rxc1 {-M2/1 0.003s}
Bb1 {-M2/1 0.002s} 456. Nb3 {-M2/1 0.002s} Ba2 {-M2/1 0.002s}
457. Qd4 {-M2/1 0.003s} Bb1 {-M2/1 0.002s} 458. Na1 {-M2/1 0.002s}
Bc2 {-M2/1 0.003s} 459. Nb3 {-M2/1 0.003s} Bd1 {-M2/1 0.002s}
460. Na1 {-M2/1 0.002s} Qe1 {-M2/1 0.002s} 461. Nc2 {-M2/1 0.002s}
Be2 {-M2/1 0.002s} 462. Na1 {+0.01/2 0.005s} Bf1 {-M2/1 0.002s}
463. Nc2 {-M2/1 0.002s} Bd3 {-M2/1 0.002s} 464. Na1 {-M2/1 0.002s}
Bb1 {-M2/1 0.002s} 465. Nc2 {-M2/1 0.002s} Qd1 {-M2/1 0.002s}
466. Na1 {+0.01/2 0.004s} Bc2 {-M2/1 0.002s} 467. Qd3 {+8.84/2 0.005s}
Bb1 {-M2/1 0.002s} 468. Na5 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
469. Nc4 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 470. Ne3 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 471. Nf1 {-M2/1 0.002s} Bb1 {-M2/1 0.002s}
472. Nh2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s} 473. Rcb1 {-M2/1 0.002s}
Qc1 {-M2/1 0.002s} 474. Qdb3 {-M4/2 0.005s} Qe1 {-M2/1 0.002s}
475. Nf1 {-M2/1 0.002s} Bd1 {-M2/1 0.002s} 476. Qc4 {-M2/1 0.003s}
Bc2 {-M2/1 0.003s} 477. Nb3 {-M2/1 0.002s} Bd1 {-M2/1 0.003s}
478. Nfd2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s} 479. Nc1 {-M2/1 0.002s}
Bd1 {-M2/1 0.002s} 480. Na2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
481. Nc3 {-M2/1 0.002s} Bd1 {-M2/1 0.003s} 482. Nf1 {-M2/1 0.003s}
Bc2 {-M2/1 0.002s} 483. Nh2 {-M2/1 0.002s} Bd1 {-M2/1 0.002s}
484. Na2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s} 485. Nc1 {-M2/1 0.002s}
Bd1 {-M2/1 0.002s} 486. Ra1 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
487. Na2 {-M2/1 0.002s} Bb1 {-M2/1 0.003s} 488. Nc1 {-M2/1 0.002s}
Ba2 {-M2/1 0.002s} 489. Nb3 {-M2/1 0.002s} Bb1 {-M2/1 0.003s}
490. Nf1 {-M2/1 0.002s} Ba2 {-M2/1 0.002s} 491. Nfd2 {-M2/1 0.002s}
Bb1 {-M2/1 0.003s} 492. Nc1 {-M2/1 0.002s} Ba2 {-M2/1 0.002s}
493. Nb1 {-M2/1 0.002s} Qf1 {-M2/1 0.002s} 494. Nc3 {-M2/1 0.002s}
Bb1 {-M2/1 0.002s} 495. Qd4 {-M2/1 0.002s} Bc2 {-M2/1 0.004s}
496. N1a2 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 497. Nb4 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 498. Nb1 {-M2/1 0.002s} Bd1 {-M2/1 0.002s}
499. Nc3 {+0.01/2 0.006s} Be2 {-M2/1 0.002s} 500. Ne4 {-M2/1 0.002s}
Bd1 {-M2/1 0.002s} 501. Na2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
502. Nc1 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 503. Na2 {-M2/1 0.002s}
Bd3 {-M2/1 0.002s} 504. Nc1 {-M2/1 0.002s} Qxc1 {-M2/1 0.002s}
505. Nd2 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 506. Nf1 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 507. Qc5 {-M4/2 0.004s} Bb1 {-M2/1 0.002s, White disconnects}
0-1
Or it is Cutechess not playing above 500 something moves? This is occurring often, the histogram of length of played games between two A-worst engines looks like this:
Image
All those little above 500 moves are "disconnects" and arbitrarily adjudicated as losses (and as wins for the other side). Otherwise most games are drawn. No games are longer than 510 or so moves, they become all "disconnect" and losses/wins.

Thanks!

User avatar
Guenther
Posts: 3009
Joined: Wed Oct 01, 2008 4:33 am
Location: Regensburg, Germany
Full name: Guenther Simon
Contact:

Re: Absolute ELO scale

Post by Guenther » Mon Dec 19, 2016 7:48 am

Laskos wrote:
cdani wrote:
Laskos wrote:
cdani wrote:
Laskos wrote:Can I ask you something: what time control, depth or nodes are needed to set in Cutechess-Cli for Random for it to work correctly in the shortest amount of time as a generator of random legal moves? I remember in the past I had some problems with it.
For example you can use
tc=inf depth=1
A game is really fast with this.
Then why this result:

Code: Select all

Score of A-Random 5+0.05'' vs A-Random depth=1: 0 - 54 - 0  [0.000] 54
ELO difference: -inf +/- nan
54 Wins for depth=1.
It seems in your conditions Andscacs is playing depth=1 games rather than random moves. While 5''+0.05'' really plays randomly.
I see. It needs at least depth 2 games to enter the main loop and play random moves.
Daniel, is there something in Andscacs which prevents it playing for more than 500 and a few moves? I get "disconnect" in Cutechess-Cli for this kind of games between A-worst engines (at fixed depth, so there is no time forfeit issue, but it happens in any condition):

Code: Select all

[Event "?"]
[Site "?"]
[Date "2016.12.19"]
[Round "1"]
[White "AL2"]
[Black "AL1"]
[Result "0-1"]
[FEN "rnbqkbnr/1ppppp1p/p7/5Pp1/8/8/PPPPP1PP/RNBQKBNR w KQkq g6 0 1"]
[PlyCount "1014"]
[SetUp "1"]
[Termination "abandoned"]
[TimeControl "inf"]

...
499. Nc3 {+0.01/2 0.006s} Be2 {-M2/1 0.002s} 500. Ne4 {-M2/1 0.002s}
Bd1 {-M2/1 0.002s} 501. Na2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
502. Nc1 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 503. Na2 {-M2/1 0.002s}
Bd3 {-M2/1 0.002s} 504. Nc1 {-M2/1 0.002s} Qxc1 {-M2/1 0.002s}
505. Nd2 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 506. Nf1 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 507. Qc5 {-M4/2 0.004s} Bb1 {-M2/1 0.002s, White disconnects}
0-1
Or it is Cutechess not playing above 500 something moves? This is occurring often, the histogram of length of played games between two A-worst engines looks like this:
Image
All those little above 500 moves are "disconnects" and arbitrarily adjudicated as losses (and as wins for the other side). Otherwise most games are drawn. No games are longer than 510 or so moves, they become all "disconnect" and losses/wins.

Thanks!
Yeah, I had wondered why the draw rate was so low, because I had expected much more draws, because it is not easy to force a mate for a true random mover against a 'worst' player.
(does the worst player also look for forced help mates? BTW if the worst player would know he plays against a true random mover, he could avoid
too much random possibilities in escape moves for forcing more chances to be mated)

I suppose there will be quite some stalemates and we will trigger a problem with game length :)

User avatar
cdani
Posts: 2104
Joined: Sat Jan 18, 2014 9:24 am
Location: Andorra
Contact:

Re: Absolute ELO scale

Post by cdani » Mon Dec 19, 2016 8:37 am

Ok! Later I try to solve all this and I publish a new version.

User avatar
Guenther
Posts: 3009
Joined: Wed Oct 01, 2008 4:33 am
Location: Regensburg, Germany
Full name: Guenther Simon
Contact:

Re: Absolute ELO scale

Post by Guenther » Mon Dec 19, 2016 9:03 am

Laskos wrote: Daniel, is there something in Andscacs which prevents it playing for more than 500 and a few moves? I get "disconnect" in Cutechess-Cli for this kind of games between A-worst engines (at fixed depth, so there is no time forfeit issue, but it happens in any condition):

Code: Select all

[Event "?"]
[Site "?"]
[Date "2016.12.19"]
[Round "1"]
[White "AL2"]
[Black "AL1"]
[Result "0-1"]
[FEN "rnbqkbnr/1ppppp1p/p7/5Pp1/8/8/PPPPP1PP/RNBQKBNR w KQkq g6 0 1"]
[PlyCount "1014"]
[SetUp "1"]
[Termination "abandoned"]
[TimeControl "inf"]
...

500. Ne4 {-M2/1 0.002s}
Bd1 {-M2/1 0.002s} 501. Na2 {-M2/1 0.002s} Bc2 {-M2/1 0.002s}
502. Nc1 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 503. Na2 {-M2/1 0.002s}
Bd3 {-M2/1 0.002s} 504. Nc1 {-M2/1 0.002s} Qxc1 {-M2/1 0.002s}
505. Nd2 {-M2/1 0.002s} Bb1 {-M2/1 0.002s} 506. Nf1 {-M2/1 0.002s}
Bc2 {-M2/1 0.002s} 507. Qc5 {-M4/2 0.004s} Bb1 {-M2/1 0.002s, White disconnects}
0-1
Or it is Cutechess not playing above 500 something moves?
...

Thanks!
Default Winboard compile has a max moves 500 build in too.
Scid vs. PC out of the box handles even more I noticed.
(other GUIs might already choke on move 300, e.g. CB)

HGM could you compile one with a max of 1500? I would like to do
some tests for this with andscacs loser/random players.

User avatar
Guenther
Posts: 3009
Joined: Wed Oct 01, 2008 4:33 am
Location: Regensburg, Germany
Full name: Guenther Simon
Contact:

Re: Absolute ELO scale

Post by Guenther » Mon Dec 19, 2016 9:10 am

cdani wrote:Ok! Later I try to solve all this and I publish a new version.
Daniel, the loser should also avoid _any_ repetition. It does not help losing the game and more important game lengths blow up by a huge margin.

User avatar
hgm
Posts: 23604
Joined: Fri Mar 10, 2006 9:06 am
Location: Amsterdam
Full name: H G Muller
Contact:

Re: Absolute ELO scale

Post by hgm » Mon Dec 19, 2016 2:26 pm

I don't think you can do that. There are plenty positions where repeating is the only way to save the draw. E.g. in KPK:
[d]8/8/4k3/8/8/4K3/4P3/8 b
Say the above position results from a capture (Kxe3). Black's only chance to draw is take and keep opposition

1... Ke5! 2. Kf3 Kf5! 3. Ke3

This is not yet a repeat, because the previous time the white King was on e3 the black one was on e6, not on f5. But if black is now not allowed to play Ke5, because that will be a repetition, he has to play something else, after which white plays Ke4 and wins.

Post Reply