It is a little suspicious again. Using the Tournament Performance Luck Calculator hosted in Chess-DB:Cubeman wrote:I wonder if Lilov will make a new video on Borislav from he latest tournament.simonhue wrote:A new video by Valiery Lilov on Borislav Ivanov's last two tourneys:

http://www.youtube.com/watch?v=qhfCUdy2Tzk&hd=1

http://chess-results.com/tnr93301.aspx?art=1&rd=9&lan=1

http://www.chess-db.com/public/perfprob ... =Calculate

Using my own Fortran programme Probabilities_in_a_trinomial_distribution (average rating difference: 2303 - 21104/9 ~ 2303 - 2344.8889 = -41.8889 Elo):Results

Probability to achieve exactly 0.0 points: 0.000002332274255490, ~1/428766

Probability to achieve exactly 0.5 points: 0.000022390549141110, ~1/44661

Probability to achieve exactly 1.0 points: 0.000830855403277235, ~1/1203

Probability to achieve exactly 1.5 points: 0.004903176064573241, ~1/203

Probability to achieve exactly 2.0 points: 0.048690531247981082, ~1/20

Probability to achieve exactly 2.5 points: 0.131118685424084644, ~1/7

Probability to achieve exactly 3.0 points: 0.207347989078588040, ~1/4

Probability to achieve exactly 3.5 points: 0.224168358032191851, ~1/4

Probability to achieve exactly 4.0 points: 0.180776095969488520, ~1/5

Probability to achieve exactly 4.5 points: 0.113122850001862949, ~1/8

Probability to achieve exactly 5.0 points: 0.056432046028432434, ~1/17

Probability to achieve exactly 5.5 points: 0.022707177143683955, ~1/44

Probability to achieve exactly 6.0 points: 0.007420709141247940, ~1/134

Probability to achieve exactly 6.5 points: 0.001962008892422435, ~1/509

Probability to achieve exactly 7.0 points: 0.000416252313678566, ~1/2402

Probability to achieve exactly 7.5 points: 0.000069102300879496, ~1/14471

Probability to achieve exactly 8.0 points: 0.000008660244823684, ~1/115470

Probability to achieve exactly 8.5 points: 0.000000743123465396, ~1/1345671

Probability to achieve exactly 9.0 points: 0.000000036765922044, ~1/27199100

---

Probability to achieve >= 0.0 points: 1.000000000000000121, ~1/0

Probability to achieve >= 0.5 points: 0.999997667725744631, ~1/1

Probability to achieve >= 1.0 points: 0.999975277176603520, ~1/1

Probability to achieve >= 1.5 points: 0.999144421773326285, ~1/1

Probability to achieve >= 2.0 points: 0.994241245708753044, ~1/1

Probability to achieve >= 2.5 points: 0.945550714460771962, ~1/1

Probability to achieve >= 3.0 points: 0.814432029036687317, ~1/1

Probability to achieve >= 3.5 points: 0.607084039958099276, ~1/1

Probability to achieve >= 4.0 points: 0.382915681925907425, ~1/2

Probability to achieve >= 4.5 points: 0.202139585956418904, ~1/4

Probability to achieve >= 5.0 points: 0.089016735954555954, ~1/11

Probability to achieve >= 5.5 points: 0.032584689926123519, ~1/30

Probability to achieve >= 6.0 points: 0.009877512782439564, ~1/101

Probability to achieve >= 6.5 points: 0.002456803641191624, ~1/407

Probability to achieve >= 7.0 points: 0.000494794748769188, ~1/2021

Probability to achieve >= 7.5 points: 0.000078542435090622, ~1/12731

Probability to achieve >= 8.0 points: 0.000009440134211125, ~1/105930

Probability to achieve >= 8.5 points: 0.000000779889387440, ~1/1282233

Probability to achieve >= 9.0 points: 0.000000036765922044, ~1/27199100

Code: Select all

```
Probabilities_in_a_trinomial_distribution, ® 2013.
--------------------------------------------------------------------
Probabilities of all possible scores in a match between two engines.
--------------------------------------------------------------------
Write down the number of games of the match (from 2 up to 150):
9
Write down the engines rating difference (between -800 Elo and 800 Elo).
Elo(first player) - Elo(second player):
-41.8889
Write down the probability of a draw (%) between 0.0001 % and 88.0013 %
40
Write down the clock rate of the CPU (in GHz), only for timing the elapsed time of the calculations:
3
End of the calculations. Approximated time spent in calculations: 26 ms.
The results will be saved into Probabilities.txt file, at the same path of this programme.
The results have been successfully saved into two files:
Probabilities.txt
Summary_of_probabilities.txt
Approximated total elapsed time: 122 ms.
Thanks for using Probabilities_in_a_trinomial_distribution. Press Enter to exit.
```

Code: Select all

```
Probabilities for a match of 9 games (rounded up to 0.0001%):
Rating difference (rounded up to 0.01 Elo): -41.89 Elo.
Probability of a win = W ~ 24.0007 %
Probability of a draw = D ~ 40.0000 %
Probability of a lose = L ~ 35.9993 %
-----------------------------------------------------
Points: 9.0/ 9
+ 9 = 0 - 0
P ~ 0.0003 %
Probability of win 9.0 points out of 9: 0.0003 %
-----------------------------------------------------
Points: 8.5/ 9
+ 8 = 1 - 0
P ~ 0.0040 %
Probability of win 8.5 points out of 9: 0.0040 %
-----------------------------------------------------
Points: 8.0/ 9
+ 7 = 2 - 0
P ~ 0.0264 %
+ 8 = 0 - 1
P ~ 0.0036 %
Probability of win 8.0 points out of 9: 0.0300 %
-----------------------------------------------------
Points: 7.5/ 9
+ 6 = 3 - 0
P ~ 0.1028 %
+ 7 = 1 - 1
P ~ 0.0476 %
Probability of win 7.5 points out of 9: 0.1503 %
-----------------------------------------------------
Points: 7.0/ 9
+ 5 = 4 - 0
P ~ 0.2569 %
+ 6 = 2 - 1
P ~ 0.2774 %
+ 7 = 0 - 2
P ~ 0.0214 %
Probability of win 7.0 points out of 9: 0.5557 %
-----------------------------------------------------
Points: 6.5/ 9
+ 4 = 5 - 0
P ~ 0.4281 %
+ 5 = 3 - 1
P ~ 0.9248 %
+ 6 = 1 - 2
P ~ 0.2497 %
Probability of win 6.5 points out of 9: 1.6026 %
-----------------------------------------------------
Points: 6.0/ 9
+ 3 = 6 - 0
P ~ 0.4757 %
+ 4 = 4 - 1
P ~ 1.9265 %
+ 5 = 2 - 2
P ~ 1.2484 %
+ 6 = 0 - 3
P ~ 0.0749 %
Probability of win 6.0 points out of 9: 3.7255 %
-----------------------------------------------------
Points: 5.5/ 9
+ 2 = 7 - 0
P ~ 0.3398 %
+ 3 = 5 - 1
P ~ 2.5686 %
+ 4 = 3 - 2
P ~ 3.4677 %
+ 5 = 1 - 3
P ~ 0.7490 %
Probability of win 5.5 points out of 9: 7.1251 %
-----------------------------------------------------
Points: 5.0/ 9
+ 1 = 8 - 0
P ~ 0.1416 %
+ 2 = 6 - 1
P ~ 2.1404 %
+ 3 = 4 - 2
P ~ 5.7793 %
+ 4 = 2 - 3
P ~ 3.1208 %
+ 5 = 0 - 4
P ~ 0.1685 %
Probability of win 5.0 points out of 9: 11.3506 %
-----------------------------------------------------
Points: 4.5/ 9
+ 0 = 9 - 0
P ~ 0.0262 %
+ 1 = 7 - 1
P ~ 1.0192 %
+ 2 = 5 - 2
P ~ 5.7791 %
+ 3 = 3 - 3
P ~ 6.9350 %
+ 4 = 1 - 4
P ~ 1.4043 %
Probability of win 4.5 points out of 9: 15.1638 %
-----------------------------------------------------
Points: 4.0/ 9
+ 0 = 8 - 1
P ~ 0.2123 %
+ 1 = 6 - 2
P ~ 3.2105 %
+ 2 = 4 - 3
P ~ 8.6684 %
+ 3 = 2 - 4
P ~ 4.6810 %
+ 4 = 0 - 5
P ~ 0.2528 %
Probability of win 4.0 points out of 9: 17.0250 %
-----------------------------------------------------
Points: 3.5/ 9
+ 0 = 7 - 2
P ~ 0.7644 %
+ 1 = 5 - 3
P ~ 5.7788 %
+ 2 = 3 - 4
P ~ 7.8014 %
+ 3 = 1 - 5
P ~ 1.6851 %
Probability of win 3.5 points out of 9: 16.0297 %
-----------------------------------------------------
Points: 3.0/ 9
+ 0 = 6 - 3
P ~ 1.6052 %
+ 1 = 4 - 4
P ~ 6.5010 %
+ 2 = 2 - 5
P ~ 4.2127 %
+ 3 = 0 - 6
P ~ 0.2528 %
Probability of win 3.0 points out of 9: 12.5716 %
-----------------------------------------------------
Points: 2.5/ 9
+ 0 = 5 - 4
P ~ 2.1669 %
+ 1 = 3 - 5
P ~ 4.6806 %
+ 2 = 1 - 6
P ~ 1.2638 %
Probability of win 2.5 points out of 9: 8.1113 %
-----------------------------------------------------
Points: 2.0/ 9
+ 0 = 4 - 5
P ~ 1.9502 %
+ 1 = 2 - 6
P ~ 2.1062 %
+ 2 = 0 - 7
P ~ 0.1625 %
Probability of win 2.0 points out of 9: 4.2189 %
-----------------------------------------------------
Points: 1.5/ 9
+ 0 = 3 - 6
P ~ 1.1701 %
+ 1 = 1 - 7
P ~ 0.5416 %
Probability of win 1.5 points out of 9: 1.7117 %
-----------------------------------------------------
Points: 1.0/ 9
+ 0 = 2 - 7
P ~ 0.4513 %
+ 1 = 0 - 8
P ~ 0.0609 %
Probability of win 1.0 points out of 9: 0.5122 %
-----------------------------------------------------
Points: 0.5/ 9
+ 0 = 1 - 8
P ~ 0.1015 %
Probability of win 0.5 points out of 9: 0.1015 %
-----------------------------------------------------
Points: 0.0/ 9
+ 0 = 0 - 9
P ~ 0.0102 %
Probability of win 0.0 points out of 9: 0.0102 %
--------------------------------------------------------------
SUMMARY:
Probability that the first player wins the match ~ 24.5440 %
Probability of a tied match ~ 15.1638 %
Probability that the second player wins the match ~ 60.2922 %
```

Code: Select all

```
Probabilities for a match of 9 games (rounded up to 0.0001%):
Rating difference (rounded up to 0.01 Elo): -41.89 Elo.
Probability of a win = W ~ 24.0007 %
Probability of a draw = D ~ 40.0000 %
Probability of a lose = L ~ 35.9993 %
-------------------------------------
Points: Probabilities (%):
0.0 0.0102
0.5 0.1015
1.0 0.5122
1.5 1.7117
2.0 4.2189
2.5 8.1113
3.0 12.5716
3.5 16.0297
4.0 17.0250
4.5 15.1638
5.0 11.3506
5.5 7.1251
6.0 3.7255
6.5 1.6026
7.0 0.5557
7.5 0.1503
8.0 0.0300
8.5 0.0040
9.0 0.0003
--------------------------------------------------------------
SUMMARY:
Probability that the first player wins the match ~ 24.5440 %
Probability of a tied match ~ 15.1638 %
Probability that the second player wins the match ~ 60.2922 %
```

I post a link about rating performance in this tournament:

http://chess-results.com/tnr93301.aspx? ... 984&snr=22

A rating performance of 2696 (!) that earns 67 Elo: 2303 + 67 = 2370 Elo (only in this tournament). Anyone knows if this tournament had live broadcasting?Chess-Results Server wrote:Name IVANOV Borislav

Starting rank 22

Rating 2303

Rating national 0

Rating international 2303

Ratingperformance 2696

FIDE rtg +/- 67.3

Points 8

Rank 1

Federation BUL

Ident-Number 0

Fide-ID 2903741

Regards from Spain.

Ajedrecista.